Local Jet Pattern: A Robust Descriptor for Texture Classification
نویسندگان
چکیده
Methods based on local image features have recently shown promise for texture classification tasks, especially in the presence of large intra-class variation due to illumination, scale, and viewpoint changes. Inspired by the theories of image structure analysis, this paper presents a simple, efficient, yet robust descriptor namely local jet pattern (LJP) for texture classification. In this approach, a jet space representation of a texture image is derived from a set of derivatives of Gaussian (DtGs) filter responses up to second order, so called local jet vectors (LJV), which also satisfy the Scale Space properties. The LJP is obtained by utilizing the relationship of center pixel with the local neighborhood information in jet space. Finally, the feature vector of a texture region is formed by concatenating the histogram of LJP for all elements of LJV. All DtGs responses up to second order together preserves the intrinsic local image structure, and achieves invariance to scale, rotation, and reflection. This allows us to develop a texture classification framework which is discriminative and robust. Extensive experiments on five standard texture image databases, employing nearest subspace classifier (NSC), the proposed descriptor achieves 100%, 99.92%, 99.75%, 99.16%, and 99.65% accuracy for Outex TC-00010 (Outex TC10), and Outex TC-00012 (Outex TC12), KTH-TIPS, Brodatz, CUReT, respectively, which are outperforms the state-of-the-art methods.
منابع مشابه
A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملتغییرات جدید الگوی دودویی محلی و طبقه بندی و قسمت بندی تصاویر بافتی بستر دریا
Texture analysis plays an important role in image processing. Considering the extraordinary appearance texture sonar images, texture analysis are good choices for analysis of acoustic seabed images. Local binary pattern (LBP) operator is a very efficient and multi-resolution texture descriptor. It acquires appropriate information from the illumination and moods of images. Despite many developin...
متن کاملExtended color local mapped pattern for color texture classification under varying illumination
This paper presents a color–texture descriptor based on the local mapped pattern approach for color–texture classification under different lighting conditions. The proposed descriptor, namely extended color local mapped pattern (ECLMP), considers the magnitude of the color vectors inside the RGB cube to extract color–texture information from the images. These features are combined with texture ...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملFeature Extraction on Local Jet Space for Texture Classification
The proposal of this study is to analyze the texture pattern recognition over the local jet space looking forward to improve the texture characterization. Local jets decompose the image based on partial derivatives allowing the texture feature extraction be exploited in different levels of geometrical structures. Each local jet component evidences a different local pattern, such as, flat region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.10921 شماره
صفحات -
تاریخ انتشار 2017